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1. INTRODUCTION

Silicon carbide (SiC) based semiconductor electronic devices and circuits are presently

being developed for use in high-temperature, high-power, and/or high-radiation conditions under

which conventional semiconductors cannot adequately perform. Silicon carbide’s ability to function

under such extreme conditions is expected to enable significant improvements to a far-ranging

variety of applications and systems. These range from greatly improved high-voltage switching [1-

4] for energy savings in public electric power distribution and electric motor drives to more

powerful microwave electronics for radar and communications [5-7] to sensors and controls for

cleaner-burning more fuel-efficient jet aircraft and automobile engines. In the particular area of

power devices, theoretical appraisals have indicated that SiC power MOSFET’s and diode rectifiers

would operate over higher voltage and temperature ranges, have superior switching characteristics,

and yet have die sizes nearly 20 times smaller than correspondingly rated silicon-based devices  [8].

However, these tremendous theoretical advantages have yet to be realized in experimental SiC

devices, primarily due to the fact that SiC’s relatively immature crystal growth and device

fabrication technologies are not yet sufficiently developed to the degree required for reliable

incorporation into most electronic systems [9].

This chapter briefly surveys the SiC semiconductor electronics technology. In particular, the

differences (both good and bad) between SiC electronics technology and well-known silicon VLSI

technology are highlighted. Projected performance benefits of SiC electronics are highlighted for

several large-scale applications. Key crystal growth and device-fabrication issues that presently limit

the performance and capability of high temperature and/or high power SiC electronics are

identified.
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2. FUNDAMENTAL SiC MATERIAL PROPERTIES

2.1 SiC CRYSTALLOGRAPHY - IMPORTANT POLYTYPES AND DEFINITIONS

Silicon carbide occurs in many different crystal structures, called polytypes. A

comprehensive introduction to SiC crystallography and polytypism can be found in [10]. Despite

the fact that all SiC polytypes chemically consist of 50% carbon atoms covalently bonded with 50%

silicon atoms, each SiC polytype has its own distinct set of electrical semiconductor properties.

While there are over 100 known polytypes of SiC, only a few are commonly grown in a

reproducible form acceptable for use as an electronic semiconductor. The most common polytypes

of SiC presently being developed for electronics are 3C-SiC, 4H-SiC, and 6H-SiC. 3C-SiC, also

referred to as β-SiC, is the only form of SiC with a cubic crystal lattice structure. The non-cubic

polytypes of SiC are sometimes ambiguously referred to as α-SiC. 4H-SiC and 6H-SiC are only

two of many possible SiC polytypes with hexagonal crystal structure. Similarly, 15R-SiC is the

most common of many possible SiC polytypes with a rhombohedral crystal structure.

Because some important electrical device properties are non-isotropic with respect to crystal

orientation, lattice site, and surface polarity, some further understanding of SiC crystal structure and

terminology is necessary. As discussed much more thoroughly in [10], different polytypes of SiC

are actually composed of different stacking sequences of Si-C bilayers (also called Si-C double

layers), where each single Si-C bilayer can simplistically be viewed as a planar sheet of silicon

atoms coupled with a planar sheet of carbon atoms. The plane formed by a bilayer sheet of Si and C

atoms is known as the basal plane, while the crystallographic c-axis direction, also known as the

stacking direction or the [0001] direction, is defined normal to Si-C bilayer plane. Figure 1

schematically depicts the stacking sequence of 6H-SiC polytype, which requires six Si-C bilayers

to define the unit cell repeat distance along the c-axis [0001] direction. The [1100] direction

depicted in Figure 1 is often referred to as the a-axis direction. The silicon atoms labeled “h” or

“k” in Figure 1 denote  Si-C double layers that reside in “quasi-hexagonal” or “quasi-cubic”

environments with respect to their immediately neighboring above and below bilayers. SiC is a

polar semiconductor across the c-axis, in that one surface normal to the c-axis is terminated with
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silicon atoms while the opposite normal c-axis surface is terminated with carbon atoms. As shown

in Figure 1, these surfaces are typically referred to as “silicon face” and “carbon face” surfaces,

respectively.

Dangling bonds from Si atoms (Si-face)

Dangling bonds from C atoms (C-face)

Si-C Double Layer
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C atom
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Figure 1. Schematic cross-section { (1120) plane } of the 6H-SiC polytype. (Modified from

[10]. With permission)
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2.2. SiC SEMICONDUCTOR ELECTRICAL PROPERTIES

Owing to the differing arrangement of Si and C atoms within the SiC crystal lattice, each

SiC polytype exhibits unique fundamental electrical and optical properties. Some of the more

important semiconductor electrical properties of the 3C, 4H, and 6H silicon carbide polytypes are

given in Table 1. Much more detailed electrical properties can be found in [11-13] and references

therein. Even within a given polytype, some important electrical properties are non-isotropic, in that

they are a strong functions of crystallographic direction of current flow and applied electric field

(for example, electron mobility for 6H-SiC). Dopants in SiC can incorporate into energetically

inequivalent quasi-hexagonal (h) C-sites or Si-sites, or quasi-cubic (k) C-sites or Si-sites (only Si-

sites are h  or k  labeled in Figure 1). While all dopant ionization energies associated with various

dopant incorporation sites should normally be considered for utmost accuracy, Table 1 lists only

the shallowest ionization energies of each impurity.

Table 1: Comparison of Selected Important Semiconductor of Major SiC Polytypes with Silicon
and GaAs. Data compiled from [11-13, 15] and references therein.

Property Silicon GaAs 4H-SiC 6H-SiC 3C-SiC
Bandgap (eV) 1.1 1.42 3.2 3.0 2.3

Relative Dielectric
Constant

11.9 13.1 9.7 9.7 9.7

Breakdown Field
ND = 1017 cm-3 (MV/cm)

0.6 0.6 //c-axis: 3.0 // c-axis: 3.2
 | c-axis: > 1

> 1.5

Thermal Conductivity
(W/cm-K)

1.5 0.5 3 - 5 3 - 5 3 - 5

Intrinsic Carrier
Concentration (cm-3)

1010 1.8 x 106 ~ 10-7 ~ 10-5 ~ 10

Electron Mobility
@ ND =1016 cm-3 (cm2/V-s)

1200 6500 //c-axis: 800
 | c-axis: 800

//c-axis: 60
 | c-axis: 400

750

Hole Mobility
@ NA =1016 cm-3 (cm2/V-s)

420 320 115 90 40

Saturated Electron
Velocity (107 cm/s)

1.0 1.2 2 2 2.5

Donor Dopants
& Shallowest Ionization

Energy (meV)

P: 45
As: 54

Si: 5.8 N: 45
P: 80

N: 85
P: 80

N: 50

Acceptor Dopants
& Shallowest Ionization

Energy (meV)

B: 45 Be, Mg, C:
28

Al: 200
B: 300

Al: 200
B: 300

Al: 270

1998 Commercial
Wafer Diameter (cm)

30 15 5 5 None
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For comparison, Table 1 also includes comparable properties of silicon and GaAs. Because

silicon is the semiconductor employed in most commercial solid-state electronics, it is the yardstick

by which other semiconductor materials must be evaluated against. To varying degrees the major

SiC polytypes exhibit advantages and disadvantages in basic material properties compared to

silicon. The most beneficial inherent material superiorities of SiC over silicon listed in Table 1 are

its exceptionally high breakdown electric field, wide band gap energy, high thermal conductivity,

and high carrier saturation velocity. The electrical device performance benefits that each of these

properties enable are discussed in the next section, as are system-level benefits enabled by improved

SiC devices.

3. APPLICATIONS AND BENEFITS OF SiC ELECTRONICS

Two most beneficial advantages that SiC-based electronics offer are in the areas of high-

temperature device operation and high-power device operation. The specific SiC device physics that

enables high temperature and high power capabilities will be examined first, followed by several

examples of revolutionary system-level performance improvements these enhanced capabilities

enable.

3.1 HIGH TEMPERATURE DEVICE OPERATION

The wide bandgap energy and low intrinsic carrier concentration of SiC allow SiC to

maintain semiconductor behavior at much higher temperatures than silicon, which in turn permits

SiC semiconductor device functionality at much higher temperatures than silicon. As discussed in

basic semiconductor physics textbooks [14, 15], semiconductor electronic devices function in the

temperature range where intrinsic carriers are negligible so that conductivity is controlled by

intentionally introduced dopant impurities. Furthermore, the intrinsic carrier concentration ni is a

fundamental prefactor to well-known equations governing undesired junction reverse-bias leakage

currents [15-18]. As temperature increases, intrinsic carriers increase exponentially so that
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undesired leakage currents grow unacceptably large, and eventually at still higher temperatures, the

semiconductor device operation is overcome by uncontrolled conductivity as intrinsic carriers

exceed intentional device dopings. Depending upon specific device design, the intrinsic carrier

concentration of silicon generally confines silicon device operation to junction temperatures less

than 300 °C. SiC’s much smaller intrinsic carrier concentration theoretically permits device

operation at junction temperatures exceeding 800 °C, and 600 °C SiC device operation has been

experimentally demonstrated on a variety of SiC devices (Section 6.3).

3.2 HIGH POWER DEVICE OPERATION

The high breakdown field and high thermal conductivity of SiC coupled with high

operational junction temperatures theoretically permit extremely high power densities and

efficiencies to be realized in SiC devices. Figures 2 and 3 demonstrate the theoretical advantage of

SiC’s high breakdown field compared to silicon in shrinking the drift-region and associated

parasitic on-state resistance of a 3000 V rated unipolar power MOSFET device [8]. The high

breakdown field of SiC relative to silicon enables the blocking voltage region to be roughly 10X

thinner and 10X heavier-doped, permitting a roughly 100-fold decrease in the dominant blocking

region (N-Drift Region) resistance RD of Figure 2 for the SiC device relative to an identically rated

3000 V silicon power MOSFET.

Significant energy losses in many silicon high-power system circuits, particularly hard-

switching motor drive and power conversion circuits, arises from semiconductor switching energy

loss [1, 19]. While the physics of semiconductor device switching loss are discussed in detail

elsewhere [15-17], switching energy loss is often a function of the turn-off time of the

semiconductor switching device, generally defined as the time lapse between when a turn-off bias is

applied to the time that the device actually cuts off most current flow. The faster a device turns off,

the smaller its energy loss in a switched power conversion circuit. For device-topology reasons

discussed in [8, 20-22], SiC’s high breakdown field and wide energy bandgap enable much faster

power switching than is possible in comparably volt-amp rated silicon power-switching devices.

Therefore, SiC-based power converters could operate at higher switching frequencies with much
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greater efficiency (i.e., less switching energy loss). Higher switching frequency in power converters

is highly desirable because it permits use of proportionally smaller capacitors, inductors, and

transformers, which in turn can greatly reduce overall system size and weight.

N-Drift Region

N+ Substrate

Figure 2. Cross-section of power MOSFET structure showing various internal resistances.

The resistance RD of the N-Drift Region is the dominant resistance in high-voltage power devices.

(From [8]. With permission.)

While SiC’s smaller on-resistance and faster switching helps minimize energy loss and heat

generation, SiC’s higher thermal conductivity enables more efficient removal of waste heat energy

from the active device. Because heat energy radiation efficiency increases greatly with increasing

temperature difference between the device and the cooling ambient, SiC’s ability to operate at high

junction temperatures permits much more efficient cooling to take place, so that heatsinks and other

device-cooling hardware (i.e., fan cooling, liquid cooling, air conditioning, etc.) typically needed to

keep high-power devices from overheating can be made much smaller or even eliminated.
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SiC FET

SiC Rectifier

Si FET

Si Rectifier

Breakdown Voltage  =  3000 V
Temperature   =  300 K

Figure 3. Simulated forward conduction characteristics of ideal Si and SiC 3000 V power

MOSFET’s and Schottky rectifiers. The high breakdown field of SiC relative to silicon (Table 1)

enables the blocking voltage region (N-Drift Region in Figure 2) to be roughly 10X thinner and

10X heavier-doped, permitting a roughly 100-fold increase in on-state current density for the 3000

V SiC devices relative to 3000 V silicon devices. (From [8]. With permission.)

While the preceding discussion focused on high-power switching for power conversion,

many of the same arguments can be applied to devices used to generate and amplify RF signals

used in radar and communications applications. In particular, the high breakdown voltage and high

thermal conductivity coupled with high carrier saturation velocity allow SiC microwave devices to

handle much higher power densities than their silicon or GaAs RF counterparts, despite SiC’s

disadvantage in low-field carrier mobility (Section 6.2) [6, 7, 23].
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3.3 SYSTEM BENEFITS OF HIGH POWER HIGH TEMPERATURE SiC DEVICES

Uncooled operation of high temperature and/or high power SiC electronics would enable

revolutionary improvements to aerospace systems. Replacement of hydraulic controls and auxiliary

power units with distributed “smart” electromechanical controls capable of harsh-ambient

operation will enable substantial jet-aircraft weight savings, reduced maintenance, reduced pollution,

higher fuel efficiency, and increased operational reliability [24-26]. SiC high-power solid-state

switches will also enable large efficiency gains in electric power management and control.

Performance gains from SiC electronics could enable the public power grid to provide increased

consumer electricity demand without building additional generation plants, and improve power

quality and operational reliability through “smart” power management. More efficient electric

motor drives which will benefit industrial production systems as well as transportation systems

such as diesel-electric railroad locomotives, electric mass-transit systems, nuclear-powered ships,

and electric automobiles and buses.

From the above discussions it should be apparent that SiC high power and/or high

temperature solid-state electronics promise tremendous advantages that could significantly impact

transportation systems and power usage on a global scale. By improving the way in which

electricity is distributed and used, improving the electric vehicles so that they become more viable

replacements for internal combustion-engine vehicles, and improving the fuel efficiency and

reducing pollution of remaining fuel-burning engines and generation plants, SiC electronics

promises the potential to better the daily lives of all citizens of planet Earth.

4. SiC SEMICONDCUTOR CRYSTAL GROWTH

As of this writing, much of the outstanding theoretical promise of SiC electronics

highlighted in the previous section has largely gone unrealized. A brief historical examination

quickly shows that serious shortcomings in SiC semiconductor material manufacturability and

quality have greatly hindered the development of SiC semiconductor electronics. From a simple-

minded point of view, SiC electronics development has very much followed the general rule of
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thumb that a solid-state electronic device can only be as good as the semiconductor material from

which it is made.

4.1 HISTORICAL LACK OF SiC WAFERS

Most of silicon carbide’s superior intrinsic electrical properties have been known for

decades. At the genesis of the semiconductor electronics era, SiC was considered an early transistor

material candidate along with germanium and silicon. However, reproducible wafers of reasonable

consistency, size, quality, and availability are a prerequisite for commercial mass-production of

semiconductor electronics. Many semiconductor materials can be melted and reproducibly

recrystallized into large single-crystals with the aid of a seed crystal, such as in the Czochralski

method employed in the manufacture of almost all silicon wafers, enabling reasonably large wafers

to be mass-produced. However, because SiC sublimes instead of melting at reasonably attainable

pressures, SiC cannot be grown by conventional melt-growth techniques. This prevented the

realization of SiC crystals suitable for mass production until the late 1980’s. Prior to 1980,

experimental SiC electronic devices were confined to small (typically ~ 1 cm2), irregularly shaped

SiC crystal platelets (Figure 4, right side) grown as a by-product of the Acheson process for

manufacturing industrial abrasives (e.g., sandpaper) [27] or by the Lely process [28]. In the Lely

process, SiC sublimed from polycrystalline SiC powder at temperatures near 2500 °C are randomly

condensed on the walls of a cavity forming small-hexagonally shaped platelets. While these small,

non-reproducible crystals permitted some basic SiC electronics research, they were clearly not

suitable for semiconductor mass production. As such, silicon became the dominant semiconductor

fueling the solid-state technology revolution, while interest in SiC-based microelectronics was

limited.

4.2 GROWTH OF 3C-SiC ON LARGE-AREA (SILICON) SUBSTRATES

Despite the absence of SiC substrates, the potential benefits of SiC hostile-environment

electronics nevertheless drove modest research efforts aimed at obtaining SiC in a manufacturable

wafer form. Towards this end, the heteroepitaxial growth of single-crystal SiC layers on top of
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large-area silicon substrates was first carried out in 1983 [29], and subsequently followed by a great

many others over the years using a variety of growth techniques. Primarily due to large differences

in lattice constant (20% difference between SiC and Si) and thermal expansion coefficient (8%

difference), heteroepitaxy of SiC using silicon as a substrate always results in growth of 3C-SiC

with a very high density of crystallographic structural defects such as stacking faults, microtwins,

and inversion domain boundaries [30, 31]. Furthermore, the as-grown surface morphology of 3C-

SiC grown on silicon is microscopically textured making submicron lithography somewhat

problematic. Other large-area wafer materials, such as sapphire, silicon-on-insulator, TiC, etc.), have

been employed as substrates for heteroepitaxial growth of SiC epilayers, but the resulting films

have been of comparably poor quality with high crystallographic defect densities.

While some limited semiconductor electronic devices and circuits have been implemented in

3C-SiC grown on silicon [32, 33], the performance of these electronics can be summarized as

severely limited by the high density of crystallographic defects to the degree that almost none of the

operational benefits discussed in Section 3 have been viably realized. Among other problems, the

crystal defects “leak” parasitic current across reverse-biased device junctions where current flow is

not desired. Because excessive crystal defects lead to electrical device shortcomings, there are as yet

no commercial electronics manufactured in 3C-SiC grown on large-area substrates.

Despite the lack of major technical progress, there is strong economic motivation to

continue to pursue heteroepitaxial growth of SiC on large-area substrates, as this would provide

cheap wafers for SiC electronics that would be immediately compatible with silicon integrated

circuit manufacturing equipment. If on-going work ever solves the extremely challenging

crystallographic defect problems associated with the heteroepitaxial growth of SiC, it would likely

become the material of choice for mass-production of SiC-based electronics. Given the present

electrical deficiencies of heteroepitaxial SiC, 3C-SiC grown on silicon is more likely to be

commercialized as a mechanical material in microelectromechanical systems (MEMS) applications

(Section 6.5) instead of being used as purely a semiconductor in traditional solid-state electronics.
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4.3 SUBLIMATION GROWTH OF SiC WAFERS

In the late 1970’s, Tairov and Tzvetkov established the basic principles of a modified seeded

sublimation growth process for growth of 6H-SiC [34, 35]. This process, also referred to as the

modified Lely process, was a breakthrough for SiC in that it offered the first possibility of

reproducibly growing acceptably large single-crystals of SiC that could be cut and polished into

mass-produced SiC wafers. The basic growth process is based on heating polycrystalline SiC

source material to ~ 2400 °C under conditions where it sublimes into the vapor phase and

subsequently condenses onto a cooler SiC seed crystal. This produces a somewhat cylindrical

boule of single-crystal SiC that grows taller at a rate of a few millimeters per hour. To date, the

preferred orientation of the growth in the sublimation process is such that vertical growth of a taller

cylindrical boule proceeds along the [0001] crystallographic c-axis direction (i.e., vertical direction

in Figure 1). Circular “c-axis” wafers with surfaces that lie normal (perpendicular) to the c-axis

can be sawed from the roughly cylindrical boule. While other growth orientations (such as growth

along the a-axis) continue to be investigated, the electronic quality of this material has thus far

proven inferior to c-axis grown wafers [36, 37].

4.3.1 Commercially Available SiC Wafers

After years of further development of the sublimation growth process, Cree Research

became the first company to sell 2.5 cm diameter semiconductor wafers of 6H-SiC (Figure 4, left

side) in 1989 [38]. Only with the development of the modified Lely seeded sublimation growth

technique have acceptably large and reproducible single-crystal SiC wafers of usable electrical

quality become available. Correspondingly, the vast majority of silicon carbide semiconductor

electronics development has taken place since 1990. Other companies have subsequently entered

the SiC wafer market, and sublimation grown wafers of the 4H-SiC polytype have also been

commercialized as summarized in Table 2.
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Figure 4. Mass-produced 2.5 cm diameter 6H-SiC wafer manufactured circa 1990 via seeded

sublimation by Cree Research (left), and 6H-SiC Lely and Acheson platelet crystals (right)

representative of single-crystal SiC substrates available prior to 1989. 5.1 cm diameter seeded

sublimation SiC wafers entered the commercial market in 1997.

Commercially available 4H- and 6H-SiC wafer specifications are given in Table 2. N-type,

p-type, and semi-insulating SiC wafers are commercially available at different prices. Wafer size,

cost, and quality are all very critical to the manufacturability and process yield of mass-produced

semiconductor microelectronics. Compared to commonplace silicon and GaAs wafer standards,

present-day 4H- and 6H-SiC wafers are small, expensive, and generally of inferior quality. In

addition to high densities of crystalline defects such as micropipes and closed-core screw

dislocations discussed in the next section (Section 4.3.2), commercial SiC wafers also exhibit

significantly rougher surfaces, and larger warpage and bow than is typical for silicon and GaAs

wafers [39]. This disparity is not surprising considering that silicon and GaAs wafers have

undergone several decades of commercial process refinement, and that SiC is an extraordinarily



15
hard material making it very difficult to properly saw and polish. Nevertheless, on-going wafer

sawing and polishing process improvements should eventually alleviate wafer surface quality

deficiencies.

Table 2: Commercial Vendors and Specifications of Selected Sublimation-Grown SiC Single-
Crystal Wafers.

Vendor Year Product Wafer
Diameter

Micropipes
(#/cm2)

Price
(US$)

Cree 1993 6H n-type, Si-face, R-Grade 3.0 cm 200 - 1000 1000
[38] 6H n-type, Si-face, P-Grade 3.0 cm 200 - 1000 2900

6H n-type, C-face, P-Grade 3.0 cm 200 - 1000 3000
6H p-type, Si-face, P-Grade 3.0 cm 200 - 1000 3300
4H n-type, Si-face, R-Grade 3.0 cm 200 - 1000 3800

Cree 1997 4H n-type, Si-face, R-Grade 3.5 cm 100 - 200 750
[38] 4H n-type, Si-face, P-Grade 3.5 cm 100 - 200 1300

4H n-type, Si-face, P-Grade 3.5 cm < 30 2300
1998 4H n-type, Si-face, R-Grade 5.1 cm < 200 2100

4H n-type, Si-face, P-Grade 5.1 cm < 200 3100
1997 4H p-type, Si-face, R-Grade 3.5 cm < 200 1900

4H Semi-Insulating, R-Grade 3.5 cm < 200 4800
6H n-type, Si-face, P-Grade 3.5 cm < 200 1000
6H p-type, Si-face, P-Grade 3.5 cm < 200 2200

Nippon Steel 1997 4H n-type 2.5 cm NA NA
[142]

SiCrystal 1997 4H n-type, Quality I 3.5 cm < 200 1200
[143] 4H n-type, Quality III 3.5 cm 400 - 1000 900

4H n-type, Quality I 2.5 cm < 200 600
6H n-type, Quality I 3.5 cm < 200 1200

Sterling and 1998 6H n-type 3.5 cm < 100 800
ATMI/Epitronics 4H n-type 3.5 cm < 100 800

[144]
[145]

4.3.2  SiC Wafer Crystal Defects

While the specific electrical effects of SiC crystal defects are discussed later in Section 6,

the micropipe defect (Table 2) is regarded as the most damaging defect that is limiting upscaling of

SiC electronics capabilities [9, 40]. A micropipe is a screw dislocation with a hollow core and a
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larger Burgers vector, which becomes a tubular void (with a hollow diameter on the order of

micrometers) in the SiC wafer that extends roughly parallel to the crystallographic c-axis normal to

the polished c-axis wafer surface [41-44]. Sublimation-grown 4H- and 6H-SiC wafers also contain

high densities of closed-core screw dislocation defects which, like micropipes, cause a considerable

amount of localized strain and SiC lattice deformation [42, 43, 45, 46]. Similar to horizontal

branches on a tree with its trunk running up the c-axis, dislocation loops emanate out along the

basal plane from screw dislocations [41, 47]. As shown in Table 2, micropipe densities in

commercial SiC wafers have shown steady improvement over a 5-year period, leading to wafers

with less than 30 micropipes per square cm of wafer area. However, as discussed in Section 6, SiC

wafer improvement trends will have to accelerate if some of SiC’s most beneficial high-power

applications are going reach timely commercial fruition.

4.4 SiC EPILAYERS

 Most SiC electronic devices are not fabricated directly in sublimation-grown wafers, but are

instead fabricated in much higher quality epitaxial SiC layers that are grown on top of the initial

sublimation-grown wafer. Well-grown SiC epilayers have superior electrical properties and are

more controllable and reproducible than bulk sublimation-grown SiC wafer material. Therefore, the

controlled growth of high-quality epilayers is highly important in the realization of useful SiC

electronics.

4.4.1  SiC Epitaxial Growth Processes

An interesting variety of SiC epitaxial growth methodologies, ranging from liquid-phase

epitaxy, molecular beam epitaxy, and chemical vapor deposition have been investigated [11, 12, 32].

The chemical vapor deposition (CVD) growth technique is generally accepted as the most

promising method for attaining epilayer reproducibility, quality, and throughputs required for mass

production. In the simplest terms, variations of SiC CVD are carried out by heating SiC substrates

in a chamber with flowing silicon and carbon containing gases that decompose and deposit Si and

C onto the wafer allowing an epilayer to grow in a well-ordered single-crystal fashion under well-
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controlled conditions. Conventional SiC CVD epitaxial growth processes are carried out at

substrate growth temperatures between 1400 to 1600 °C at pressures from 0.1 to 1 atmosphere

resulting in growth rates on the order of a micrometer per hour [39, 48-50]. Higher-temperature (up

to 2000 °C) SiC CVD growth processes are also being pioneered to obtain higher SiC epilayer

growth rates on the order of hundreds of micrometers per hour [51].

4.4.2  SiC Homoepitaxial Growth

Homoepitaxial growth, whereby the polytype of the SiC epilayer matches the polytype of

the SiC substrate, is accomplished by step controlled epitaxy [39, 49, 52]. Step controlled epitaxy is

based upon growing epilayers on an SiC wafer polished at an angle (called the “tilt-angle” or

“off-axis angle”) of typically 3° to 8° off the (0001) basal plane, resulting in a surface with atomic

steps and flat terraces between steps as schematically depicted in Figure 5. When growth conditions

are properly controlled and there is a sufficiently short distance between steps, Si and C adatoms

impinging onto the growth surface find their way to steps where they bond and incorporate into the

crystal. Thus, ordered lateral “step flow” growth takes place which enables the polytypic stacking

sequence of the substrate to be exactly mirrored in the growing epilayer. When growth conditions

are not properly controlled or when steps are too far apart (as can occur with SiC substrate surfaces

that are polished to within less than 1° of the basal plane), growth adatoms can nucleate and bond in

the middle of terraces instead of at the steps, this leads to heteroepitaxial growth of poor-quality 3C-

SiC [39, 49]. To help prevent spurious nucleation of 3C-SiC “triangular inclusions” during

epitaxial growth, most commercial 4H- and 6H-SiC substrates are polished to tilt angles of 8° and

3.5° off the (0001) basal plane, respectively.

It is important to note that most present-day as-grown SiC epilayers contain varying

densities of undesirable surface morphological features which could affect SiC device processing

and performance [39, 48]. In addition to “triangular inclusions”, these include “growth pits” as

well as large macrosteps formed by coalescence of multiple SiC growth steps (i.e., “step

bunching”) during epitaxy. Pre-growth wafer polishing as well as growth initiation procedures

have been shown to strongly impact the formation of undesirable epitaxial growth features [39, 48].
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Further optimization of pre-growth treatments and epitaxial growth initiation processes are expected

to reduce undesired morphological growth features.  

Growth step
(0001)

Basal Plane

Tilt angle

Terrace Direction of Lateral
Step Flow Growth

c-axis

Figure 5. Cross-sectional schematic representation of “off-axis” polished SiC surface used

for homoepitaxial growth. When growth conditions are properly controlled and there is a

sufficiently short distance between steps, Si and C adatoms impinging onto the growth surface find

their way to steps where they bond and incorporate into the crystal. Thus ordered lateral “step

flow” growth takes place which enables the polytypic stacking sequence of the substrate to be

exactly mirrored in the growing epilayer. (Modified from [10]. With permission)

4.4.3  SiC Epilayer Doping

In-situ doping during CVD epitaxial growth is primarily accomplished through the

introduction of nitrogen (usually N2) for n-type and aluminum (usually trimethyl- or

triethylaluminum) for p-type epilayers [12]. Some alternative dopants such as phosphorous, boron,

and vanadium have also been investigated for n-type, p-type, and semi-insulating epilayers,

respectively. While some variation in epilayer doping can be carried out strictly by varying the flow

of dopant gasses, the site-competition doping methodology [53, 54] has enabled a much broader

range of SiC doping to be accomplished. In addition, site competition epitaxy has also made

moderate epilayer dopings more reliable and repeatable. The site-competition dopant-control

technique is based on the fact that many dopants of SiC preferentially incorporate into either Si

lattice sites or C lattice sites. As an example, nitrogen preferentially incorporates into lattice sites
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normally occupied by carbon atoms. By epitaxially growing SiC under carbon-rich conditions,

most of the nitrogen present in the CVD system (whether it is a residual contaminant or

intentionally introduced) can be excluded from incorporating into the growing SiC crystal.

Conversely by growing in a carbon-deficient environment, the incorporation of nitrogen can be

enhanced to form very heavily-doped epilayers for ohmic contacts. Aluminum, which is opposite to

nitrogen, prefers the Si-site of SiC, and other dopants have also been controlled through site-

competition by properly varying the Si/C ratio during crystal growth. SiC epilayer dopings ranging

from 9 x 1014 to 1 x 1019 cm-3 are commercially available, and researchers have reported obtaining

dopings nearly a factor of 10 larger and smaller than this range for n-type and p-type dopings.

Commercial epilayer thickness and doping tolerances are presently specified at 25% and 100%,

respectively [38], while doping uniformities of 7% and thickness uniformities of 4% over a 30 mm

wafers have been reported in developmental research [48].

4.4.4  SiC Epilayer Crystal Defects

Improvements in epilayer quality are needed as SiC electronics upscale toward production

integrated circuits, as there are presently many observable defects present in state of the art SiC

homoepilayers. Non-ideal surface morphological features, such as “growth pits”, 3C-SiC

triangular inclusions (“triangle defects”) introduced in Section 4.4.2, are generally more prevalent

in 4H-SiC epilayers than 6H-SiC epilayers. Most of these features appear to be manifestations of

non-optimal “step flow” during epilayer growth arising from substrate defects, non-ideal substrate

surface finish, contamination, and/or unoptimized epitaxial growth conditions. While by no means

trivial, it is anticipated that SiC epilayer surface morphology will greatly improve as refined

substrate preparation and epilayer growth processes are developed.

Many impurities and crystallographic defects found in sublimation-grown SiC wafers do

not propagate into SiC homoepitaxial layers. For example, basal-plane dislocation loops emanating

from micropipes and screw dislocations in sublimation-grown SiC wafers (Section 4.3.2) are not

generally observed in SiC epilayers  [47]. Unfortunately, however, screw dislocations (both

micropipes and closed-core screw dislocations) present in commercial c-axis wafers do replicate
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themselves up the crystallographic c-axis into SiC homoepilayers grown on commercial wafers.

Therefore, as discussed later in Section 6, devices fabricated in commercial epilayers are still subject

to electrical performance and yield limitations imposed by commercial substrate screw-dislocation

defect densities.

4.4.5  Alternative Growth Methods to Reduce SiC Epilayer Dislocations

As of this writing, there is no known practical method of realizing screw-dislocation-free

4H- or 6H-SiC homoepilayers on conventional sublimation-grown substrates. Some non-

conventional epitaxial growth techniques have been attempted to prevent the propagation of

micropipes into an epilayer [55, 56]. While these approaches have scored modest success in closing

and covering up micropipes, to date there has been little, if any, improvement demonstrated in

electrical devices fabricated in the resulting material. This is perhaps due to the fact that screw-

dislocations and associated harmful stresses may still be present in the epilayer, despite the fact that

some open cores may have been converted to closed cores.

Because screw dislocations propagate up the c-axis, one could conceivably alleviate screw

dislocations by growing epilayers on SiC wafers with their surface parallel to the c-axis using “a-

axis” wafers. Unfortunately, efforts directed at realizing a-axis wafers and epilayers have to date

been much less successful than c-axis wafers and epilayers, primarily because defects that form and

propagate up the basal plane (the vertical wafer and epilayer growth direction in a-axis oriented

wafers) have proven more harmful and difficult to eliminate than screw dislocations in conventional

c-axis wafers and epilayers [36, 37].

Selected area epitaxial growth techniques have recently led to startling reductions in GaN

epilayer defect densities [57]. While selective-area epitaxial growth of 3C-SiC has been

demonstrated, the applicability of similar techniques to realizing superior electrical-quality SiC will

be much more difficult due to the step-flow homoepitaxial growth mechanism of α-SiC as well as

high growth temperatures (> 1400 °C) which are incompatible with conventional growth-masking

materials like SiO2.
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5. SiC DEVICE FUNDAMENTALS

In order to minimize the development and production costs of SiC electronics, it is essential

that SiC device fabrication take advantage of existing silicon and GaAs wafer processing

infrastructure as much as possible. As will be discussed in this section, most of the steps necessary

to fabricate SiC electronics starting from SiC wafers can be accomplished using somewhat

modified commercial silicon electronics processes and fabrication tools.

5.1 CHOICE OF POLYTYPE FOR DEVICES

As discussed in Section 4, 4H-SiC and 6H-SiC are the far superior forms of semiconductor

device quality SiC commercially available in mass-produced wafer form. Therefore, only 4H-SiC

and 6H-SiC device processing methods will be explicitly considered in the rest of this section. It

should be noted, however, that most of the processing methods discussed in this section are

applicable to other polytypes of SiC, except for the case of 3C-SiC grown on silicon where all

processing temperatures need to be kept well below the melting temperature of silicon (~ 1400 °C).

It is generally accepted that 4H-SiC’s substantially higher carrier mobility and shallower

dopant ionization energies compared to 6H-SiC (Table 1) should make it the polytype of choice for

most SiC electronic devices, provided that all other device processing, performance, and cost-related

issues play out as being roughly equal between the two polytypes. Furthermore, the inherent

mobility anisotropy that degrades conduction parallel to the crystallographic c-axis in 6H-SiC [58]

will particularly favor 4H-SiC for vertical power device configurations (Section 6.4).

5.2 SiC SELECTIVE DOPING - ION IMPLANTATION

The fact that diffusion coefficients of most SiC dopants are negligibly small below ~ 1800

°C is excellent for maintaining device junction stability, because dopants do not undesirably diffuse

as the device is operated long-term at high temperatures. Unfortunately however, this characteristic

also precludes the use of conventional dopant diffusion, a highly useful technique widely employed

in silicon microelectronics manufacturing, for patterned doping of SiC.
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Laterally patterned doping of SiC is carried out by ion implantation. This somewhat restricts

the depth that most dopants can be conventionally implanted to less than 1 µm using conventional

dopants and implantation equipment. Compared to silicon processes, SiC ion implantation requires

a much higher thermal budget to achieve acceptable dopant implant electrical activation. Summaries

of ion implantation processes for various dopants can be found in [11, 59, 60]. Most of these

processes are based on carrying out implantation at elevated temperatures (~ 500 to 800 °C) using a

patterned high-temperature masking material. The elevated-temperature during implantation

promotes some lattice self-healing during the implant, so that damage and segregation of displaced

silicon and carbon atoms does not become excessive, especially in high-dose implants often

employed for ohmic contact formation [59, 60]. Coimplantation of carbon with p-type dopants has

recently been investigated as a means to improve the electrical conductivity of implanted p-type

contact layers [61].

Following implantation the patterning mask is stripped and a much higher temperature (~

1200 to 1800 °C) anneal is carried out to achieve maximum electrical activation of dopant donor or

acceptor ions. The final annealing conditions are crucial to obtaining desired electrical properties

from ion implanted layers. At higher implant anneal temperatures, the SiC surface morphology can

seriously degrade as damage-assisted sublimation etching of the SiC surface begins to take place

[62]. Because sublimation etching is driven primarily by loss of silicon from the crystal surface,

annealing in silicon overpressures can be used to prevent surface degradation during high

temperature anneals. Such overpressure can be achieved by close-proximity solid sources, such as

using an enclosed SiC crucible with SiC lid and/or SiC powder near the wafer, or by annealing in a

silane-containing atmosphere.

5.3 SiC CONTACTS AND INTERCONNECT

All useful semiconductor electronics require conductive signal paths in and out of each

device as well as conductive interconnects to carry signals between devices on the same chip and to

external circuit elements that reside off-chip. While SiC itself is theoretically capable of fantastic

operation under extreme conditions (Section 3), such functionality is useless without contacts and
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interconnects that are also capable of operation under the same conditions to enable complete

extreme-condition circuit functionality. Previously-developed conventional contact and interconnect

technologies will likely not be sufficient for reliable operation in extreme conditions that SiC

enables. The durability and reliability of metal-semiconductor contacts and interconnects are one of

the main factors limiting the operational high-temperature limits of SiC electronics. Similarly, SiC

high-power device contacts and metallizations will have to withstand both high temperature and high

current density stress never before encountered in silicon power electronics experience.

The subject of metal-semiconductor contact formation is a very important technical field too

broad to be discussed in detail here. For general background discussions on metal-semiconductor

contact physics and formation, the reader should consult narratives presented in [15, 63]. These

references primarily discuss ohmic contacts to conventional narrow-bandgap semiconductors such

as silicon and GaAs. Specific overviews of SiC metal-semiconductor contact technology can be

found in [64-67].

As discussed in [64-67], there are both similarities and a few differences between SiC

ohmic contacts and ohmic contacts to conventional narrow-bandgap semiconductors (e.g., silicon,

GaAs). The same basic physics and current transport mechanisms that are present in narrow-

bandgap contacts, such as surface states, Fermi-pinning, thermionic emission, and tunneling, also

apply to SiC contacts. A natural consequence of the wider bandgap of SiC is higher effective

Schottky barrier heights. Analogous with narrow-bandgap ohmic contact physics, the

microstructural and chemical state of the SiC-metal interface is crucial to contact electrical

properties. Therefore, pre-metal-deposition surface preparation, metal deposition process, choice of

metal, and post-deposition annealing can all greatly impact the resulting performance of metal-SiC

contacts. Because the chemical nature of the starting SiC surface is strongly dependent on surface

polarity, it is not uncommon to obtain significantly different results when the same contact process

is applied to the silicon face surface versus the carbon face surface.
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5.3.1  SiC Ohmic Contacts

Ohmic contacts serve the purpose of carrying electrical current into and out of the

semiconductor, ideally with no parasitic resistance. The properties of various ohmic contacts to SiC

reported to date are summarized in [66, 67]. While SiC specific ohmic contact resistances at room

temperature are generally higher than in contacts to narrow-bandgap semiconductors, they are

nevertheless sufficiently low for most envisioned SiC applications. Lower specific contact

resistances are usually obtained to n-type 4H- and 6H-SiC (~ 10-4 to 10-6 ohm-cm2) than to p-type

4H- and 6H-SiC (~ 10-3 to 10-5 ohm-cm2). Consistent with narrow-bandgap ohmic contact

technology, it is easier to make low-resistance ohmic contacts to heavily-doped SiC. While it is

possible to achieve ohmic contacts to lighter-doped SiC using high-temperature annealing, the

lowest-resistance ohmic contacts are most easily implemented on SiC degenerately doped by site

competition (Section 4.4.3) or high-dose ion implantation (Section 5.2). If the SiC doping is

sufficiently degenerate, many metals deposited on a relatively clean SiC surface are ohmic in the

“as deposited” state [68]. Regardless of doping, it is common practice in SiC to thermally anneal

contacts to obtain the minimum possible ohmic contact resistance. Most SiC ohmic contact anneals

are performed at temperatures around 1000 °C in non-oxidizing environments. Depending upon the

contact metallization employed, this anneal generally causes limited interfacial reactions (usually

metal-carbide or metal-silicide formation) that broaden and/or roughen the metal-semiconductor

interface, resulting in enhanced conductivity through the contact.

Truly enabling harsh-environment SiC electronics will require ohmic contacts that can

reliably withstand prolonged harsh-environment operation. Most reported SiC ohmic metallizations

appear sufficient for long-term device operation up to 300 °C. SiC ohmic contacts that withstand

heat soaking under no electrical bias at 500 to 600 °C for hundreds or thousands of hours in non-

oxidizing gas or vacuum environments have also been demonstrated. In air however, there has only

been deomonstration to date of a contact that can withstand heat soaking (no electrical bias) for 60

hours at 650 °C [69]. Some very beneficial aerospace systems will require simultaneous high

temperature (T > 300 °C) and high current density operation in oxidizing air environments.

Electromigration, oxidation, and other electrochemical reactions driven by high temperature
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electrical bias in a reactive oxidizing environment are likely to limit SiC ohmic contact reliability for

the most demanding applications. The durability and reliability of SiC ohmic contacts is one of the

critical factors limiting the practical high-temperature limits of SiC electronics.

5.3.2  SiC Schottky Contacts

Rectifying metal-semiconductor Schottky barrier contacts to SiC are useful for a number of

devices including metal-semiconductor field-effect transistors (MESFET's) and fast-switching

rectifiers. References [64, 65, 67, 70] summarize electrical results obtained in a variety of SiC

Schottky studies to date. Due to the wide bandgap of SiC, almost all unannealed metal contacts to

lightly doped 4H- and 6H-SiC are rectifying. Rectifying contacts permit extraction of Schottky

barrier heights and diode ideality factors by well-known current-voltage (I-V) and capacitance-

voltage (C-V) electrical measurement techniques [63]. While these measurements show a general

trend that Schottky junction barrier height does somewhat depend on metal-semiconductor

workfunction difference, the dependence is weak enough to suggest that surface state charge also

plays a significant role in determining the effective barrier height of SiC Schottky junctions. At least

some experimental scatter exhibited for identical metals can be attributed to cleaning and metal

deposition process differences, as well as different barrier height measurement procedures. The

work by Teraji et. al. [71], in which two different surface cleaning procedures prior to titanium

deposition lead to ohmic behavior in one case and rectifying behavior in the other, clearly shows the

important role that process recipe can play in determining SiC Schottky contact electrical properties.

It is worth noting that barrier heights calculated from C-V data are often somewhat higher

than barrier heights extracted from I-V data taken from the same diode. Furthermore, the reverse

current drawn in experimental SiC diodes, while small, is nevertheless larger than expected based on

theoretical substitution of SiC parameters into well-known Schottky diode reverse leakage current

equations developed for narrow-bandgap semiconductors. Bhatnagar et. al. [72] proposed a model

to explain these behaviors in which localized surface defects, perhaps elementary screw dislocations

where they intersect the SiC-metal interface, cause locally reduced junction barriers in the immediate

vicinity of defects. Because current is exponentially dependent on Schottky barrier height, this
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results in the majority of measured current flowing at local defect sites instead of evenly distributed

over the entire Schottky diode area. In addition to local defects, electric field crowding along the

edge of the SiC Schottky barrier can also lead to increased reverse-bias leakage current and reduced

reverse breakdown voltage [15, 16, 63]. Schottky diode edge termination techniques to relieve

electric field edge crowding and improve Schottky rectifier reverse properties are discussed later in

Section 6.4.3. Quantum mechanical tunneling of carriers through the barrier may also account for

some excess reverse leakage current in SiC Schottky diodes [73].

The high temperature operation of rectifying SiC Schottky diodes is primarily limited by

reverse-bias thermionic leakage of carriers over the junction barrier. Depending on the specific

application and the barrier height of the particular device, SiC Schottky diode reverse leakage

currents generally grow to excessive levels at around 300 to 400 °C. As with ohmic contacts,

electrochemical interfacial reactions must also be considered for long-term Schottky diode

operation at the highest temperatures.

5.4 PATTERNED ETCHING OF SiC FOR DEVICE FABRICATION

At room temperature, no known wet chemical etches single-crystal SiC. Therefore, most

patterned etching of SiC for electronic devices and circuits is accomplished using dry etching

techniques. The reader should consult [74] which contains an excellent summary of dry SiC

etching results obtained to date. The most commonly employed process involves Reactive Ion

Etching (RIE) of SiC in fluorinated plasmas. Sacrificial etch masks (often aluminum metal) are

deposited and photolithographically patterned to protect desired areas from being etched. The SiC

RIE process can be implemented using standard silicon RIE hardware, and typical 4H- and 6H-SiC

RIE etch rates on the order of hundreds of angstroms per minute. Well-optimized SiC RIE

processes are typically highly anisotropic with little undercutting of the etch mask, leaving smooth

surfaces. One of the keys to achieving smooth surfaces is preventing “micromasking” wherein

masking material is slightly etched and randomly redeposited onto the sample, effectively masking

very small areas on the sample that were intended for uniform etching. This can result in “grass”-

like etch-residue features being formed in the unmasked regions, which is undesirable in most



27
cases. In special cases, RIE etching under conditions promoting micromasking is useful in greatly

roughening the SiC surface to reduce the contact resistance of subsequently deposited ohmic

metallizations.

While RIE etch rates are sufficient for many electronic applications, much higher SiC etch

rates are necessary to carve features on the order of tens to hundreds of micrometers deep that are

needed to realize advanced sensors, microelectromechanical systems (MEMS), and some very high

voltage power device structures. High density plasma dry etching techniques, such as electron

cyclotron resonance (ECR) and inductively coupled plasma (ICP), have been developed to meet the

need for deep-etching of SiC. Residue-free patterned etch rates exceeding a thousand angstroms a

minute have been demonstrated [74-76].

Patterned etching of SiC at very high etch rates has also been demonstrated using photo-

assisted and dark electrochemical wet etching [77, 78]. By choosing proper etching conditions, this

technique has demonstrated a very useful dopant-selective etch-stop capability. However, there are

major incompatibilities of the electrochemical process that make it undesirable for VLSI mass-

production, including extensive pre-etching and post-etching sample preparation, etch isotropy and

mask undercutting, and somewhat nonuniform etching across the sample.

5.5 SiC INSULATORS: THERMAL OXIDES AND MOS TECHNOLOGY

The vast majority of semiconductor integrated circuit chips in use today rely on silicon

Metal-Oxide-Semiconductor Field Effect Transistors (MOSFET’s), whose electronic advantages

and operational device physics are summarized in Choma’s chapter on devices and their models

and elsewhere [15, 16, 79]. Given the extreme usefulness and success of MOSFET-based

electronics in VLSI silicon, it is naturally desirable to implement high-performance inversion

channel MOSFET’s in SiC. Like silicon, SiC forms a thermal SiO2 oxide when it is sufficiently

heated in an oxygen environment. While this enables SiC MOS technology to somewhat follow the

highly successful path of silicon MOS technology, there are nevertheless important differences in

insulator quality and device processing that are presently preventing SiC MOSFET’s from realizing

their full beneficial potential. While the following discourse attempts to quickly highlight key issues
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facing SiC MOSFET development, more detailed insights can be found in [80-83]. In highlighting

the difficulties facing SiC MOSFET development, it is important to keep in mind that early silicon

MOSFET’s faced similar developmental challenges that took many years of dedicated research

efforts to successfully overcome.

From a purely electrical point of view, there are two prime operational deficiencies of SiC

oxides and MOSFET’s compared to silicon MOSFET’s. First, effective inversion channel

mobilities in most SiC MOSFET’s are much lower (typically well under 100 cm2/V-s for inversion

electrons) than one would expect based on silicon inversion channel MOSFET carrier mobilities.

This seriously reduces the transistor gain and current-carrying capability of SiC MOSFET’s, so

that SiC MOSFET’s are not nearly as advantageous as theoretically predicted. Second, SiC oxides

have not proven as reliable and immutable as well-developed silicon oxides, in that SiC MOSFET’s

are more prone to threshold voltage shifts, gate leakage, and oxide failures than comparably-biased

silicon MOSFET’s. The excellent works by [80] and [83] discuss noteworthy differences between

the basic electrical properties of n-type versus p-type SiC MOS devices. SiC MOSFET oxide

electrical performance deficiencies appear mostly attributable to differences between silicon and SiC

thermal oxide quality and interface structure that cause the SiC oxide to exhibit undesirably higher

levels of interface state densities (~ 1011 - 1012 eV-1cm-2), fixed oxide charges (~ 1011 - 1012 cm-2),

charge trapping, carrier oxide tunneling, and roughness-related scattering of inversion channel

carriers.

One of the most obvious differences between thermal oxidation of silicon and SiC to form

SiO2 is the presence of C in SiC. While most of the C in SiC converts to gaseous CO and CO2 and

escapes the oxide layer during thermal oxidation, leftover C species residing near the SiC-SiO2

interface nevertheless appear to have a detrimental impact on SiO2 electrical quality [80, 81].

Cleaning treatments and oxidation/anneal recipes aimed at reducing interfacial C appear to improve

SiC oxide quality. Another procedure employed to minimize detrimental carbon effects has been to

form gate oxides by thermally oxidizing layers of silicon deposited on top of SiC [84]. Likewise,

deposited insulators also show promise toward improving SiC MOSFET characteristics, as
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Sridevan et. al. [85] have recently reported greatly improved SiC inversion channel carrier mobilities

(> 100 cm2/V-s) using thick deposited gate-insulators.

SiC surfaces are well known to be much rougher than silicon surfaces, due to off-angle

polishing needed to support SiC homoepitaxy (Figure 5) as well as step-bunching (particularly

pronounced in 4H-SiC) that occurs during SiC homoepilayer growth (Section 4.4) [39, 86]. The

impact of surface morphology on inversion channel mobility is highlighted by the recent work of

Scharnholz et. al [87], in which improved mobility (> 100 cm2/V-s) was obtained by specifically

orienting SiC MOSFET’s in a direction that current flowed parallel to surface step texture. The

interface roughness of SiC may also be a factor in poor oxide reliability by assisting unwanted

injection of carriers that damage and degrade the oxide.

As Agarwal et. al. [88] have pointed out, the wide bandgap of SiC reduces the potential

barrier impeding tunneling of damaging carriers through SiC-thermal oxides, so that perfectly-

grown oxides on atomically smooth SiC would not be as reliable as silicon thermal oxides.

Therefore, it is highly probable that alternative gate-insulators will have to be developed for

optimized implementation of inversion channel SiC FET’s for the most demanding high-power

and/or high-temperature electronic applications.

5.6 SiC DEVICE PACKAGING AND SYSTEM CONSIDERATIONS

Hostile-environment SiC semiconductor devices and IC’s are of little advantage if they

cannot be reliably packaged and connected to form a complete system capable of hostile-

environment operation. With proper materials selection, modifications of existing IC packaging

technologies appear feasible for non-power SiC circuit packaging up to 300 °C [89, 90]. Prototype

electronic packages that can withstand over a thousand of hours heat soaking without electrical bias

at 500 °C have been demonstrated [91]. Much work remains before electronics system packaging

can meet the needs of the most demanding aerospace electronic applications, whose requirements

include high power operation in high vibration 500-600 °C oxidizing-ambient environments.

Similarly, harsh environment passive components, such as inductors, capacitors, and transformers,
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must also be developed for operation in demanding conditions before the full system-level benefits

of SiC electronics discussed in Section 3 can be successfully realized.

6. SiC ELECTRONIC DEVICES AND CIRCUITS

This section briefly summarizes a variety of SiC electronic device designs  broken down by

major application areas. The operational performance of experimental SiC devices is compared to

theoretically predicted SiC performance as well as the capabilities of existing silicon and GaAs

devices. SiC process and materials technology issues limiting the capabilities of various SiC device

topologies are highlighted as key issues to be addressed in further SiC technology maturation.

6.1 SiC OPTOELECTRONIC DEVICES

The wide bandgap of SiC is useful for realizing short wavelength blue and ultraviolet (UV)

optoelectronics. 6H-SiC-based blue pn junction light emitting diodes LED’s were the first silicon

carbide based devices to reach high volume commercial sales. These epitaxially-grown dry-etch

mesa-isolated pn junction diodes were the first mass-produced LED’s to cover the blue (~ 250 to

280 nm peak wavelength) portion of the visible color spectrum, which in turn enabled the realization

of the first viable full-color LED-based displays [92]. Because SiC’s bandgap is indirect (i.e., the

conduction minimum and valence band maximum do not coincide in crystal momentum space),

luminescent recombination in the LED’s is governed by inherently inefficient indirect transitions

mediated by impurities and phonons [93]. Therefore, the external quantum efficiency of SiC blue

LED’s (i.e., percentage of light energy output obtained vs. electrical energy input) was limited to

well below 1%. While commercially successful during the 1989-1995 timeframe, SiC-based blue

LED’s have now been totally obsoleted by the emergence of much brighter, much more efficient

direct-bandgap GaN blue LED’s.

SiC has proven much more efficient at absorbing short-wavelength light, which has enabled

the realization of SiC UV-sensitive photodiodes that serve as excellent flame sensors in turbine-

engine combustion monitoring and control [92, 94]. The wide bandgap of 6H-SiC is useful for

realizing low photodiode dark currents, as well as sensors that are blind to undesired near-infrared
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wavelengths produced by heat and solar radiation. Commercial SiC-based UV flame sensors, again

based on epitaxially-grown dry-etch mesa-isolated 6H-SiC pn junction diodes, have successfully

reduced harmful pollution emissions from gas-fired ground-based turbines used in electrical power

generation systems. Prototype SiC photodiodes are also being developed to improve combustion

control in jet-aircraft engines [95].

6.2 SiC RF DEVICES

The main use of SiC RF devices appears to lie in high-frequency solid-state high-power

amplification at frequencies from around 600 MHz (UHF-band) to perhaps around 10 GHz (X-

band). As discussed in better detail in [6, 7, 23, 96, 97] the high breakdown voltage and high

thermal conductivity coupled with high carrier saturation velocity allow SiC RF transistors to handle

much higher power densities than their silicon or GaAs RF counterparts, despite SiC’s

disadvantage in low-field carrier mobility (Section 2.2). This power output advantage of SiC is

briefly illustrated in Figure 6 for the specific case of a Class A MESFET-based RF amplifier. The

maximum theoretical RF power of a Class A MESFET operating along the DC load line shown

in Figure 6 is approximated by [7]:

 
Pmax =

Idson Vb – Vknee

8 Eq. 1

The higher breakdown field of SiC permits higher drain breakdown voltage (Vb), permitting RF

operation at higher drain biases. Given that there is little degradation in Idson and Vknee for SiC

versus GaAs and silicon, the increased drain voltage directly leads to higher SiC MESFET output

power densities. The higher thermal conductivity of SiC is also crucial in minimizing channel self-

heating so that phonon scattering does not seriously degrade channel carrier velocity and Idson. As

discussed in [7, 97], similar RF output power arguments can be made for SiC-based Static

Induction Transistors (SIT’s).

The high power density of high-frequency SiC transistors could prove very useful in

realizing solid-state transmitters for cell phone base-stations, High Definition Television (HDTV)



32
Transmitters, and radar transmitters, because it reduces the number of devices needed to generate

sufficient RF power for these applications. Fewer transistors capable of operating at higher

temperatures reduces matching and cooling requirements, leading to reduced overall size and cost of

these systems. While excellent for fixed-base high-power RF transmission systems, SiC RF

transistors are not well suited for portable handheld RF transceivers where drain voltage and power

are restricted to function within the operational limitations of small-sized battery packs.

Idss

D
ra

in
 C

ur
re

nt

Drain Voltage 

DC Load Line (slope = 1/RL)VkneeSlope = 1/Ron

Vb  
(Drain)

Vd

Idson

I2R Losses

Figure 6. Piecewise linear MESFET drain characteristic showing DC load line used in Class

A RF amplifier operation. The higher breakdown voltage Vb enabled by SiC’s higher breakdown

field enables operation at higher drain biases, leading to higher RF power densities.  (From [7].

With permission.)

Because rapid progress is being made toward improving the capabilities of SiC RF power

transistors, the reader should consult the latest electron device literature for up-to-date SiC RF

transistor capabilities. A late 1997 summary of solid-state high-power RF amplification transistor

results, including 4H-SiC, 6H-SiC, silicon, GaAs, and GaN device results, is given in Figure 7 [7].

Despite the fact that SiC RF transistors are not nearly as optimized, they have still demonstrated

higher power densities than silicon and GaAs RF power transistors. The commercial availability of
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semi-insulating SiC substrates to minimize parasitic capacitances is crucial to the high-frequency

performance of  SiC RF MESFET’s. MESFET devices fabricated on semi-insulating substrates are

conceivably less susceptible to adverse yield consequences arising from micropipes than vertical

high-power switching devices, primarily because a c-axis micropipe can no longer short together

two conducting sides of a high field junction in most areas of the lateral channel MESFET

structure. In addition to micropipes, other nonidealities, such as variations in epilayer doping and

thickness, surface morphological defects, and slow charge trapping/detrapping phenomena causing

unwanted device I-V drift [98], also limit the yield, size, and manufacturability of SiC RF

transistors. However, increasingly beneficial SiC RF transistors should continue to evolve as SiC

crystal quality and device processing technology continues to improve.
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Figure 7. Theoretical (lines) and experimental (symbols) RF power densities of RF transistors

fabricated in silicon, GaAs, SiC, and GaN as of late 1997. (From [96]. With permission.)
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In addition to high-power RF transistors, SiC mixer diodes show excellent promise for

reducing undesired intermodulation interference in RF receivers [99]. More than 20 dB dynamic

range improvement was demonstrated using non-optimized SiC Schottky diode mixers. Following

further development and optimization, SiC-based mixers should improve the interference immunity

of a number of RF systems where receivers and high-power transmitters are closely located, as well

as improve the reliability and safety of flight RF-based avionics instruments used to guide aircraft

in low-visibility weather conditions.

6.3 HIGH TEMPERATURE SIGNAL LEVEL DEVICES

Most analog signal conditioning and digital logic circuits are considered “signal level” in

that individual transistors in these circuits do not require any more than a few milliamperes of

current and less than 20 volts to function properly. Commercially available silicon-on-insulator

circuits can perform complex digital and analog signal level functions up to 300 °C when high-

power output is not required [100, 101]. Aside from IC’s where it is advantageous to combine

signal level functions with high-power or unique SiC sensors/MEMS onto a single chip, more

expensive SiC circuits solely performing low-power signal level functions appear largely

unjustifiable for low-radiation applications at temperatures below 250 - 300 °C.

Achieving long-term operational reliability is one of the primary challenges of realizing 300

- 600 °C devices and circuits. Circuit technologies that have been used to successfully implement

VLSI circuits in silicon and GaAs, such as CMOS, ECL, BiCMOS, DCFL, etc., are to varying

degrees candidates for T > 300 °C SiC integrated circuits. High temperature gate-insulator

reliability (Section 5.5) is critical to the successful realization of MOSFET-based integrated

circuits. Gate-to-channel Schottky diode leakage limits the peak operating temperature of SiC

MESFET circuits to around 400 °C (Section 5.3.2). Prototype bipolar SiC transistors have

exhibited poor gains [102], but improvements in SiC crystal growth and surface passivation should

improve SiC BJT gains [103]. As discussed in Section 5, a common obstacle to all technologies is

reliable long-term operation of contacts, interconnect, passivation, and packaging at T > 300 °C.

Because signal level circuits are operated at relatively low electric fields well below the electrical
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failure voltage of most micropipes, micropipes affect signal-level circuit process yields to a much

lesser degree than they affect high-field power device yields. Nonidealities in SiC epilayers, such as

variations in epilayer doping and thickness, surface morphological defects, and slow charge

trapping/detrapping phenomena causing unwanted device I-V drift, presently limit the yield, size,

and manufacturability of SiC high temperature integrated circuits [83]. However, continued

progress in maturing SiC crystal growth and device fabrication technology should eventually enable

the realization of SiC VLSI circuits.

Robust circuit designs that accommodate large changes in device operating parameters with

temperature will be necessary for circuits to function successfully over the very wide temperature

ranges (as large as 650 °C spread) enabled by SiC. While there are similarities to silicon device

behavior as a function of temperature, there are also significant differences that will present

challenges to SiC integrated circuit designers. For example, in silicon devices dopant atoms are

fully ionized at standard operating temperatures of interest, so that free carrier concentrations

correspond with dopant impurity concentrations [14, 15]. Therefore, the resistivity of silicon

increases with increasing temperature as phonon scattering reduces carrier mobility. SiC device

layers on the other hand are significantly “frozen-out” due to deeper donor and acceptor dopant

ionization energies, so that non-trivial percentages of dopants are not ionized to produce free

carriers that carry current at or near room-temperature. Thus, the resistivity of SiC layers can

sometimes initially decrease with increasing temperature as dopant atoms ionize to contribute more

current-conducting free carriers, then decrease similar to silicon after most dopant atoms have

ionized and increased phonon scattering degrades free carrier mobility. Thus SiC transistor

parameters can exhibit temperature variations not found in silicon devices, so that new device-

behavior models are sometimes necessary to carry out proper design of wider-temperature range

SiC integrated circuits. Because of carrier freezeout effects, it will be difficult to realize SiC-based

IC’s operational at temperatures much lower than -55 °C (the lower end of U.S. Mil-Spec.

temperature range).

Small-scale prototype logic and analog amplifier SiC-based IC’s (one of which is shown in

Figure 8) have been demonstrated using SiC variations of NMOS, CMOS, JFET, and MESFET
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device topologies [33, 83, 104-108]. These prototypes are not commercially viable as of this writing,

largely due to their high cost, unproven reliability, and limited temperature range that is mostly

covered by silicon-on-insulator based circuitry. However, increasingly capable and economical SiC

integrated circuits will continue to evolve as SiC crystal growth and device fabrication technology

continues to improve.

Figure 8. Optical micrograph of  1 x 2 mm2 300 °C 6H-SiC operational amplifier integrated

circuit. The chip contains 14 depletion-mode N-channel MOSFET’s integrated with 19 resistors

(From [105]. With permission)

6.4 SiC HIGH POWER SWITCHING DEVICES

6.4.1  Operational Limitations Imposed by SiC Material Quality

As discussed in Section 3, the most lucrative system benefits of SiC electronics arguably lie

in high-power devices. Unfortunately, these devices are also the most susceptible to present-day

deficiencies in SiC material quality and process variations, mostly because they operate at high

electric fields and high current densities that place the greatest electrical stresses on the

semiconductor and surrounding device materials. Prototype SiC devices have demonstrated
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excellent area-normalized performance, often well beyond (> 10X) the theoretical power density of

silicon power electronics (Figure 9). However, the presence of micropipe crystal defects has thus

far prevented scale-up of small-area prototypes to large areas that can reliably deliver high total

operating currents in large-scale power systems as discussed in Section 4 and [9, 40]. Rectifying

power device junctions responsible for OFF-state blocking fail at micropipe defects, leading to

undesired (often damaging) localized current flow through micropipes at unacceptably low electric

fields well below the critical reverse-breakdown field of defect-free SiC. Over the last decade, SiC

micropipe densities have dropped from several 100’s per square cm of wafer area to 10’s per

square cm of wafer area (Section 4, Table 2), resulting in corresponding improvements in peak SiC

device operating currents from less than 1 A to 10’s of A. However, further defect reductions of at

least an additional order of magnitude will be necessary before reasonably good power device

yields and currents will be obtained.

In addition to micropipe defects, the density of non-hollow core (elementary) screw

dislocation defects in SiC wafers and epilayers has been measured on the order of several 1000’s

per square cm of wafer area (Section 4). While these defects are not nearly as detrimental to device

performance as micropipes, recent experiments have shown that they degrade the leakage and

breakdown characteristics of pn junctions [109, 110]. Less direct experimental evidence exists to

suggest that elementary screw dislocations may also cause localized reductions in minority carrier

diffusion lengths [111, 112] and nonuniformities and catastrophic localized failure to high-voltage

Schottky rectifiers under reverse bias [72, 113]. While localized breakdown is well-known to

adversely degrade silicon device reliability in high-power switching applications, the exact impact of

localized breakdown in SiC devices has yet to be quantified. If it turns out that SiC power devices

roughly adhere to the same reliability physics well-known for silicon power devices, it is possible

that SiC devices containing non-hollow core screw dislocations could prove unacceptably unreliable

for use in the most demanding high-power conversion applications such as large-motor control and

public power distribution. Thus, these applications might require much larger (i.e., much longer-

term) improvements in SiC material quality so as to eliminate all screw dislocations (both hollow

core and non-hollow core) from any given device.
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Figure 9. Experimental SiC (symbols) and theoretical SiC and silicon (lines) Schottky diode

specific on resistance plotted as a function of off-state blocking voltage. While the graph clearly

shows that the area-normalized performance of small-area SiC devices is orders of magnitude better

than silicon, these results have not been successfully upscaled to realize large-area high-current SiC

devices due to high densities of device-degrading defects present in commercial SiC wafers and

epilayers. (From  [117]. With permission.)

6.4.2  SiC High-Voltage Edge Termination

For SiC power devices to successfully function at high voltages, peripheral breakdown due

to edge-related electric field crowding [15, 16, 63] must be avoided through careful device design

and proper choice of insulating/passivating dielectric materials. The peak voltage of most prototype

high-voltage SiC devices has been limited by often destructive edge-related breakdown, especially in
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SiC devices capable of blocking multiple kilovolts [114, 115]. In addition, most testing of mult-

kilovolt SiC devices has required the device to be immersed in specialized high-dielectric strength

fluids or gas atmospheres to minimize damaging electrical arcing and surface flashover at device

peripheries [114, 116, 117].

A variety of edge termination methodologies, many of which were originally pioneered in

silicon high-voltage devices, have been applied to prototype SiC power devices with varying degrees

of success. Some of these approaches include tailored dopant guard rings [118-121], tailored etches

[122-124], neutral ion implant damage rings [125, 126], metal guard rings [127], and anode contact-

insulator overlap [128, 129]. The higher voltages and higher local electric fields of SiC power

devices will place larger stresses on packaging and on-wafer insulating materials, so it is unclear

that traditional materials used to insulate/passivate silicon high-voltage devices will prove sufficient

for reliable use in SiC high-voltage devices, especially if those devices are to be operated at high

temperatures.

6.4.3  SiC High Power Rectifiers

The high-power diode rectifier is a critical building block of power conversion circuits. A

good review of experimental SiC rectifier results is given in [67]. As discussed in [8, 20-22], the

most important SiC diode rectifier device design tradeoffs roughly parallel well-known silicon

rectifier tradeoffs, except for the fact that numbers for current densities, voltages, power densities,

and switching speeds are much higher in SiC. SiC’s high breakdown field and wide energy

bandgap permit operation of SiC metal-semiconductor Schottky diodes at much higher voltages

(i.e., kilovolts) and current densities (A/cm2) than is practical with silicon-based Schottky diodes. A

drawback of the wide bandgap of SiC is that it requires larger forward bias voltages (~ 1 V) to

reach the turn-on “knee” where significant ON-state current begins flowing, and this can lead to an

undesirable increase in ON-state power dissipation. However, the benefits of 100X decreased drift

region resistance and much faster dynamic switching should greatly overcome SiC ON-state knee

voltage disadvantages in most high-power systems. Figure 9 summarizes experimental Schottky

diode specific on-resistance versus breakdown voltage results published up through 1997 [117].
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For blocking voltages up to 3 kV, unipolar SiC Schottky rectifiers offer lower turn-on voltages (~ 1

- 2 V versus ~ 3 V) and faster switching speeds (due to no appreciable minority carrier

injection/charge storage) than SiC pn junctions [21, 22].

In rectifiers that block over ~ 3 kV, bipolar minority carrier charge injection (i.e.,

conductivity modulation) should enable SiC pn diodes to carry higher current densities than

unipolar Schottky diodes whose drift regions conduct solely using dopant-atom majority carriers

[20-22]. SiC pn junction blocking voltages as high as 5.5 kV have been realized as of this writing

[130], and further blocking voltage improvements are expected as SiC materials growth and

processing further improve. Consistent with silicon rectifier experience, SiC pn junction generation-

related reverse leakage is usually smaller than thermionic-assisted Schottky diode reverse leakage.

While it has not yet been experimentally verified for SiC, silicon power device experience [131]

strongly suggests that SiC pn junction rectifiers should offer significantly better reverse breakdown

immunity to overvoltage/overcurrent faults that can occur in high-power switching circuits with

large inductors than SiC Schottky rectifiers. As with silicon bipolar devices, reproducible localized

control of minority carrier lifetime will be essential in optimizing the switching-speed versus ON-

state current density performance tradeoffs of SiC bipolar devices for specific applications. SiC

minority carrier lifetimes on the order of several microseconds have been obtained in high-quality

epilayers [132], and lifetime reduction via intentional impurity incorporation and introduction of

radiation-induced structural defects appears feasible.

Hybrid Schottky/pn rectifier structures first developed in silicon that combine pn junction

reverse blocking with low Schottky forward turn-on should prove extremely useful to realizing

application-optimized SiC rectifiers [133, 134]. Similarly, combinations of dual Schottky metal

structures and trench pinch rectifier structures can also be used to optimize SiC rectifier forward

turn-on and reverse leakage properties [135].

6.4.4  SiC High Power Switching Transistors

Three terminal power switches that use small drive signals to control large voltages and

currents are also a critical building blocks of high-power conversion circuits. As well summarized
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in [21], a variety of prototype three-terminal SiC power switches have been demonstrated in recent

years. For the most part SiC solid-state switches are based on well-known silicon device topologies,

like the thyristor, vertical MOSFET’s, IGBT, GTO, etc., that try to maximize power density via

vertical current flow using the substrate as one of the device terminals. Because these switches all

contain high-field junctions responsible for blocking current flow in the off-state, their maximum

operating currents are primarily restricted by the material quality deficiencies discussed in Section

6.4.1. Therefore, while blocking voltages over 2 kV have been demonstrated in low-current devices

[116], experimental SiC power switches have only realized modest current ratings (under 1 A in

most devices).

Silicon power MOSFET’s and IGBT’s are extremely popular in power circuits largely

because their MOS gate drives are well insulated and require little drive signal power, and the

devices are “normally off” in that there is no current flow when the gate is unbiased at 0 V.

However, as discussed in Section 5.5, the performance and reliability of SiC power device

structures with inversion channel MOS field-effect gates (i.e., MOSFET’s, IGBT’s, etc.) is limited

by poor inversion channel mobilities and questionable oxide reliability at high temperatures. Thus,

SiC device structures that do not rely on high-quality gate oxides, such as the thyristor, appear more

favorable for more immediate realization, despite some non-trivial drawbacks in operational circuit

design and switching speed.

Recently, some non-traditional power switch topologies have been proposed to somewhat

alleviate SiC oxide and material quality deficiencies while maintaining normally off insulated gate

operation. Shenoy et. al. [136] and Hara [137] have respectively implemented lateral and vertical

doped-channel depletion/accumulation mode power SiC MOSFET’s that can be completely

depleted by built-in potentials at zero gate bias so that they are “normally off”. Spitz et. al. [116]

recently demonstrated high-voltage SiC lateral MOSFET’s implemented on semi-insulating

substrates. These devices could conceivably reduce the adverse yield consequences of micropipes,

because a c-axis micropipe can no longer short together two conducting sides of a high field

junction in most regions of the device. With the assistance of lateral surface electric field tailoring

techniques, Baliga [138] has suggested that lateral-conduction SiC power devices could deliver
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better power densities than traditional vertical SiC power device structures. Baliga has also

proposed the advantageous high voltage switching by pairing a high-voltage SiC MESFET or JFET

with a lower-voltage silicon power MOSFET [138].

6.5 SiC FOR SENSORS AND MICRO ELECTROMECHANICAL SYSTEMS

(MEMS)

Silicon carbide’s high temperature capabilities have enabled the realization of catalytic

metal-SiC and metal-insulator-SiC (MIS) prototype gas sensor structures with great promise for

emissions monitoring applications [139, 140]. High temperature operation of these structures, not

possible with silicon, enables rapid detection of changes in hydrogen and hydrocarbon content to

sensitivities of parts-per-million in very small sized sensors that could easily be placed

unobtrusively anywhere on an engine. Once they have been more fully developed, these sensors

could assist in active combustion control to reduce harmful pollution emissions from automobile

and aircraft engines.

Hesketh’s chapter on micromachining describes conventional silicon-based

microelectromechanical systems (MEMS). While the previous sections of this chapter have

centered on the use of SiC for traditional semiconductor electronic devices, SiC is also likely to play

a significant role in emerging MEMS applications [141]. In addition to high temperature electrical

operation, SiC has excellent mechanical properties vital to durable operation of microsystems that

address some shortcomings of silicon-based MEMS, such as extreme hardness and low friction

reducing mechanical wear-out as well as excellent chemical inertness to corrosive ambients.

Unfortunately, the same properties that make SiC more durable than silicon also make SiC more

difficult to process into MEMS structures than silicon. Nevertheless, SiC-based pressure sensors,

accelerometers, resonators (Figure 10), and other MEMS systems are being developed for use in

harsh-environment applications beyond the reach of silicon-based microsystems. The general

approaches to fabricating harsh-environment MEMS structures in SiC and prototype SiC-MEMS

results obtained to date are discussed in [141].
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Figure 10. Micromachined SiC-based lateral resonator device. SiC’s excellent mechanical and

electrical properties are enabling the development of harsh-environment microelectromechanical

systems (MEMS) for operation beyond the limits of conventional silicon-based MEMS. (From

Prof. M. Mehregany, Case Western Reserve University. With permission.)

7. FURTHER RECOMMENDED READING

This chapter has presented a brief summary overview of evolving SiC semiconductor device

technology. The following publications, which were heavily referenced in this chapter, are highly

recommended as advanced supplemental reading that more completely covers the work being done

to develop SiC electronics in much greater technical detail than possible within this short chapter.

Reference [12] is a two-volume collection of invited in-depth papers from recognized leaders in SiC

technology development that first appeared in special issues of the journal Physica Status Solidi (A

- Vol. 162, No. 1) and (B - Vol. 202, No. 1) in 1997. Reference [11] is a two-volume collection of

papers from the 7th International Conference on Silicon Carbide, III-Nitrides, and Related Materials

held in Stockholm, Sweden in September of 1997. As SiC electronics is evolving rapidly to fulfill
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the needs of a steadily increasing array of applications, the reader should consult the current

literature for updates on SiC device capabilities. One of the best ongoing sources of SiC electronics

information is the International Conference on Silicon Carbide and Related Materials, which is held

every two years. The next meeting is scheduled for October of 1999 in Research Triangle Park,

North Carolina (internet website: www.ISCRM99.ncsu.edu). In addition, a variety of internet

websites contain useful SiC information and links, including

www.lerc.nasa.gov/WWW/SiC/SiC.html, www.hiten.com, www.cree.com,

www.ecn.purdue.edu/WBG/, www.sterling-semiconductor.com/index.htm,  www.imc.kth.se/sic/,

and www.ifm.liu.se/Matephys/new_page/research/sic/index.html, among others that can be easily

located using widely available World Wide Web internet search engine services.
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